Attention
This repository has been archived. Please use xarray.DataTree instead.
datatree.DataTree.reset_coords#
- DataTree.reset_coords(names: Dims = None, drop: bool = False) Self [source]#
Given names of coordinates, reset them to become variables
- Parameters:
Examples
>>> dataset = xr.Dataset( ... { ... "temperature": ( ... ["time", "lat", "lon"], ... [[[25, 26], [27, 28]], [[29, 30], [31, 32]]], ... ), ... "precipitation": ( ... ["time", "lat", "lon"], ... [[[0.5, 0.8], [0.2, 0.4]], [[0.3, 0.6], [0.7, 0.9]]], ... ), ... }, ... coords={ ... "time": pd.date_range(start="2023-01-01", periods=2), ... "lat": [40, 41], ... "lon": [-80, -79], ... "altitude": 1000, ... }, ... )
# Dataset before resetting coordinates
>>> dataset <xarray.Dataset> Size: 184B Dimensions: (time: 2, lat: 2, lon: 2) Coordinates: * time (time) datetime64[ns] 16B 2023-01-01 2023-01-02 * lat (lat) int64 16B 40 41 * lon (lon) int64 16B -80 -79 altitude int64 8B 1000 Data variables: temperature (time, lat, lon) int64 64B 25 26 27 28 29 30 31 32 precipitation (time, lat, lon) float64 64B 0.5 0.8 0.2 0.4 0.3 0.6 0.7 0.9
# Reset the ‘altitude’ coordinate
>>> dataset_reset = dataset.reset_coords("altitude")
# Dataset after resetting coordinates
>>> dataset_reset <xarray.Dataset> Size: 184B Dimensions: (time: 2, lat: 2, lon: 2) Coordinates: * time (time) datetime64[ns] 16B 2023-01-01 2023-01-02 * lat (lat) int64 16B 40 41 * lon (lon) int64 16B -80 -79 Data variables: temperature (time, lat, lon) int64 64B 25 26 27 28 29 30 31 32 precipitation (time, lat, lon) float64 64B 0.5 0.8 0.2 0.4 0.3 0.6 0.7 0.9 altitude int64 8B 1000
- Returns:
See also
Dataset.set_coords