Attention
This repository has been archived. Please use xarray.DataTree instead.
datatree.DataTree.head#
- DataTree.head(indexers: Mapping[Any, int] | int | None = None, **indexers_kwargs: Any) Self [source]#
Returns a new dataset with the first n values of each array for the specified dimension(s).
- Parameters:
indexers (
dict
orint
, default:5
) – A dict with keys matching dimensions and integer values n or a single integer n applied over all dimensions. One of indexers or indexers_kwargs must be provided.**indexers_kwargs (
{dim: n, ...}
, optional) – The keyword arguments form ofindexers
. One of indexers or indexers_kwargs must be provided.
Examples
>>> dates = pd.date_range(start="2023-01-01", periods=5) >>> pageviews = [1200, 1500, 900, 1800, 2000] >>> visitors = [800, 1000, 600, 1200, 1500] >>> dataset = xr.Dataset( ... { ... "pageviews": (("date"), pageviews), ... "visitors": (("date"), visitors), ... }, ... coords={"date": dates}, ... ) >>> busiest_days = dataset.sortby("pageviews", ascending=False) >>> busiest_days.head() <xarray.Dataset> Size: 120B Dimensions: (date: 5) Coordinates: * date (date) datetime64[ns] 40B 2023-01-05 2023-01-04 ... 2023-01-03 Data variables: pageviews (date) int64 40B 2000 1800 1500 1200 900 visitors (date) int64 40B 1500 1200 1000 800 600
# Retrieve the 3 most busiest days in terms of pageviews
>>> busiest_days.head(3) <xarray.Dataset> Size: 72B Dimensions: (date: 3) Coordinates: * date (date) datetime64[ns] 24B 2023-01-05 2023-01-04 2023-01-02 Data variables: pageviews (date) int64 24B 2000 1800 1500 visitors (date) int64 24B 1500 1200 1000
# Using a dictionary to specify the number of elements for specific dimensions
>>> busiest_days.head({"date": 3}) <xarray.Dataset> Size: 72B Dimensions: (date: 3) Coordinates: * date (date) datetime64[ns] 24B 2023-01-05 2023-01-04 2023-01-02 Data variables: pageviews (date) int64 24B 2000 1800 1500 visitors (date) int64 24B 1500 1200 1000
See also
Dataset.tail
,Dataset.thin
,DataArray.head